

Characteristics of normal cell division

- · Anchorage dependence
 - Cells must be attached to a solid surface to divide
- Density dependence
 - Cells stop dividing when too dense
- · Growth factors
- Signals that regulate cell cycle
- Senescence
 - After a finite # divisions, cell self-destruct (apoptosis)
 - Irreparable DNA or membrane damage
 - · Shortened telomeres

Cell Cycle Checkpoints Assures key processes are completed before cycle progresses G₁ checkpoint: ✓ Sufficient growth & reserves to support replication ✓ Pre-replication check for DNA damage ✓ Internal clock ✓ External growth factors and/or inhibitors G, checkpoint: ✓ Sufficient growth & reserves to support mitosis & cytokinesis ✓ Duplication of centrosomes ✓ Replication of DNA ✓ Pre-mitotic check for DNA damage M checkpoint ✓ Spindle formed & functioning ✓ Chromosome kinetochores correctly attached to spindle ✓ Chromosomes properly aligned & untangled on metaphase plate

Transformation: damage to checkpoint mechanisms cause abnormal cell division

"Hallmarks of Cancer":

- · Growth independent of external growth regulators
 - Loss of anchorage & density dependence
- Uncoordinated with surrounding tissues or the body
 Growth without stopping at checkpoints
- Growth without stopping at checkpoints
- · Avoidance of apoptosis despite cell/DNA damage
- Unlimited number of cell divisions
- Activation of telomerase

Other indicators:

- De-differentiation
 Δ cytoskeleton → Δ morphology & motility
- Angiogenesis induced growth of blood vessels to support increased metabolic demands of hyper-growth

Cancer cells exhibit neither density-dependent inhibition nor anchorage dependence

And have only limited dependence on growth factors

Primary culture of *transformed* cells

Cancer cells usually continue to divide well beyond a single layer, forming a clump of overlapping cells.

Many transformed cell lines can also be

cultured as liquid cell suspensions with no need for attachment substrate.

- · Transformed cells are also immortalized
 - showing no senescence
 - E.g., the HeLa cell line was cultured from a tumor removed from Henrietta Lacks back in 1951. It is still growing in labs all over the world.

Stages of tumor progression

- Dysplasia: additional genetic/epigenetic changes lead to abnormal growth of malformed, disorganized cells.
- **3. Solid tumor** *in situ*: cells are even more malformed and de-differentiated. Growth extends from original mass into the tissue.
- 4. Malignancy (cancer): cells detach and penetrate basal lamina into other tissues. May enter lymphatic or circulatory system and reach other organs to start new tumors.

Stages of tumor progression

· Metastasis: spread of malignant cells from original tissue

A tumor grows from a single cancer cell.

2 Cancer cells invade eneighboring tissue.

Cancer cells spread through lymph and blood vessels to other parts of the body.

A small percentage of cancer cells may survive and establish a new tumor in another part of the body

Stages of tumor progression

Metastasis: spread of malignant cells from original tissue

Types of tumors

Classification based upon tissue of origin

- · "Solid tumors"
 - Carcinoma: epithelial cells
 □ 80–90% of all cancers
 - Sarcoma: muscle or connective tissue
- Others
 - Leukemia/Lymphoma/Myeloma: bone marrow
 - Glioma: brain
 - Choriocarcinoma: placenta

Pulmonary carcinoma in situ

Transformation requires a **series** of non-lethal mutations within a specific cell line

- · Turn on "on-switches"
 - Dominant mutations:
 proto-oncogenes ⇒ oncogenes
 - Bypass checkpoints
- Turn off "off-switches"
 - Recessive mutations: inactivate tumor suppressors
- Remove checkpoints
- All cancers involve mutations in one or more oncogene and one or more tumor suppressors.

Sources of mutations

- · Spontaneous
- Induced mutagens/carcinogens
 - Radiation
 - UV mostly point mutations
 - X-rays translocations
 - Endogenous chemicals
 - Reactive oxygen species (ROS) → alter DNA bases
 - Chronic inflammation
 Fat metabolism
 - Exogenous chemicals
 - Bind to DNA → replication & transcription errors
 - Benzo-pyrene from tobacco smoke
 Aflatoxins from food-borne fungi
 - Viruses
 - · Inserted pro-viruses
 - · Viral-induced growth factors
 - Genetic carry-over from prior host cells

- ☐ Cancers figure among the leading causes of morbidity and mortality worldwide, with approximately 14 million new cases and 8.2 million cancer related deaths in 2012.
 - The number of new cases is expected to **rise** by about 70% over the next 2 decades.
 [to 22 million]
- ☐ Around **one third** of cancer deaths are due to the 5 leading **behavioral and dietary risks**: tobacco use, obesity, low fruit and vegetable intake, lack of physical activity, alcohol use.
- ☐ Tobacco use is the most important risk factor for cancer causing around 20% of global cancer deaths and around 70% of global lung cancer deaths.
 - Tobacco-related cancers, combined with tobacco-related diseases including cardiovascular and chronic lung diseases, make tobacco use the leading cause of preventable deaths in the world. [Even without effects of 2nd- & 3nd-hand smoking.]

Oncogenes

- **Proto-oncogene**: normal gene functions in stimulating cell growth or viability, esp. for embryogenesis & organogenesis.
- Mutated form = oncogene: stimulates unregulated cell division or immortalization.
- <u>Presence</u> of the oncogene or oncogene product ⇒↑probability of transformation

Oncogenes

- <u>Presence</u> of the oncogene or oncogene product ⇒↑probability of transformation
- Types of oncogenes:
 - Growth factors
 - Growth factor receptor (HER2)
 - G-proteins (Ras)
 - Receptor-associated kinases (Src)
 - Transcription factors (Myc)
 - Telomerase activators
 - Apoptosis-regulating proteins (Bcl-2)

Tumor suppressors

- **Tumor suppressors**: normal gene functions in delaying cell growth, locating or repairing damaged DNA, or initiating apoptosis of irreparably damaged or senescent cells.
- Mutated form is inactive: unable to regulate cycle, detect or repair genetic damage, or divert to self-destruct.
- <u>Absence</u> of the tumor suppressor ⇒↑probability of transformation

Tumor suppressors

- <u>Absence</u> of the tumor suppressor ⇒↑probability of transformation
- Types of tumor suppressors:
 - Transcription factors (p53)
 - Factors that restrict access of transcription factors (APC)
 - Factors that block effects of transcription factors (Rb)
 - DNA repair (BRCA)

Clonal evolution (multistep) model of cancer development 1. Point mutations in tumor suppressor gene allows cell divisions without adequate checks & repair of DNA damage 2. Aberrant cell divisions result in further genetic damage, including translocations, deletions, and aneuploidy. 3. Major genetic rearrangements create further disruptions of proto-oncogenes and tumor suppressors to produce transformation and further stages of tumor progression.

CANCER

What is cancer?

- 1. Unrestricted proliferation of a cell line
 - > Displacement of healthy tissues
 - > Pressure on confined tissues
 - Over-consumption of resources
- 2. Metastasis
 - Spreading
- 3. Disrupted gene expression
 - De-differentiation
 - Loss of normal function
 - Inappropriate production of bioactive substances

