An explanation of the "Precise Definition of a Limit" , Section 2.4

When one writes the formal $\varepsilon-\delta$ ("epsilon-delta", although some call it the $\delta-\varepsilon$) definition of limit (Definition 2 on page 110):
" $\operatorname{Lim} f(x)=L$, if for every number $\varepsilon>0$ there is a number $\delta>0$ such that $\mathrm{x} \rightarrow \mathrm{a}$
if $0<|\mathrm{x}-\mathrm{a}|<\delta$ then $|\mathrm{f}(\mathrm{x})-\mathrm{L}|<\varepsilon$ "

This means that if your choice of x (as an input value) is within δ units of a, then your output value $\mathrm{f}(\mathrm{x})$ will be within ε units of L . Clearly (I hope), the closer you are to a -the smaller δ becomes- the closer you will get to L -the smaller ε becomes.

However, typically one tries to first determine how close to L one wants to end up; so therefore the thinking \& work is actually done backwards: something like: If I know I want to end up being within ε units of L , then how close to a must I start? And so the 'work' is to determine a value of δ (almost always in terms of ε; typically when you have an actual numerical value of ε, that will determine a numerical value of δ).

Example 2 and 3 in the text best show this algebraic process.

Ex. 2:
 Prove that $\quad \underset{x \rightarrow 3}{\operatorname{Lim}}(4 x-5)=7$

We know that if we use direct substitution, the limit is 7 . But direct substitution is just a technique. How do we know it (or any other process) will always work? Thus we need a proof of the limit process. Definition 2 on page 110 provides the definition of "limit", and examples 2 \& 3 show how it is applied.

The 'work' to 'prove the limit' is a two-part process:

1) doing some algebra to arrive at a value for δ in terms of ε (which typically means starting with $|\mathrm{f}(\mathrm{x})-\mathrm{L}|<\varepsilon$ and ending up with $|\mathrm{x}-\mathrm{a}|<\delta$
2) then "showing that this δ works" by choosing that value of δ (in terms of ε) start with $|\mathrm{x}-\mathrm{a}|<\delta$ (now replace the δ) and do the algebra (build up) to arrive at $|\mathrm{f}(\mathrm{x})-\mathrm{L}|<\varepsilon$

What happens if the value of δ (in terms of ε) also contains some expression in terms of x ? (see example 4) $\underset{x \rightarrow 3}{\operatorname{Lim}} x^{2}=9$

Since $\left|x^{2}-9\right|=|x-3||x+3|<\varepsilon$, then $|x-3|<\frac{e}{|x+3|}=\delta$ Now what?
When this happens, we now need to come up with a reasonable value of δ, and this will depend on the value of x. Therefore it is reasonable to assume that x is within 1 unit (an easy number to use) of 3 , or $x \in[2,4]$ (" x is an element of the closed interval [2,4]"). Letting $x=2$ means that $\delta=\frac{\varepsilon}{5}$ and letting $\mathrm{x}=4$ means that $\delta=\frac{\varepsilon}{7}$. Obviously $\frac{\varepsilon}{7}$ is smaller, so we take that fraction.

Therefore $\delta=$ the smaller of $\frac{e}{|x+3|}$ or $\frac{\varepsilon}{7}$, depending on the choice of x . This is formally written as $\delta=\min \left(1, \frac{e}{|x+3|}\right)$

