An explanation of the "Precise Definition of a Limit", Section 2.4

When one writes the formal $\varepsilon - \delta$ ("epsilon–delta", although some call it the $\delta - \varepsilon$) definition of limit (Definition 2 on page 110):

"Lim f(x) = L , if for every number $\epsilon > 0$ there is a number $\delta > 0$ such that $x \to a$

if $0 < |x-a| < \delta$ then $|f(x)-L| < \epsilon$ "

This means that if your choice of x (as an input value) is within δ units of a, then your output value f(x) will be within ϵ units of L. Clearly (I hope), the closer you are to a —the smaller δ becomes— the closer you will get to L —the smaller ϵ becomes.

However, typically one tries to first determine how close to L one wants to end up; so therefore the thinking & work is actually done backwards: something like: If I know I want to end up being within ε units of L, then how close to a must I start? And so the 'work' is to determine a value of δ (almost always in terms of ε ; typically when you have an actual numerical value of ε , that will determine a numerical value of δ).

Example 2 and 3 in the text best show this algebraic process.

Ex. 2: Prove that $\lim_{x \to 3} (4x-5) = 7$

We know that if we use direct substitution, the limit is 7. But direct substitution is just a technique. How do we know it (or any other process) will <u>always</u> work? Thus we need a <u>proof</u> of the limit process. Definition 2 on page 110 provides the definition of "limit", and examples 2 & 3 show how it is applied.

The 'work' to 'prove the limit' is a two-part process:

- 1) doing some algebra to arrive at a value for δ in terms of ϵ (which typically means starting with $|f(x) L| < \epsilon$ and ending up with $|x a| < \delta$
- 2) then "showing that this δ works" by choosing that value of δ (in terms of ϵ) start with $|x-a| < \delta$ (now replace the δ) and do the algebra (build up) to arrive at $|f(x)-L| < \epsilon$

What happens if the value of δ (in terms of ϵ) also contains some expression in terms of x? (see example 4) $\lim_{x \to 3} x^2 = 9$

Since $\begin{vmatrix} x^2 - 9 \end{vmatrix} = \begin{vmatrix} x - 3 \end{vmatrix} \begin{vmatrix} x + 3 \end{vmatrix} < \varepsilon$, then $\begin{vmatrix} x - 3 \end{vmatrix} < \frac{e}{\begin{vmatrix} x + 3 \end{vmatrix}} = \delta$ Now

what?

When this happens, we now need to come up with a reasonable value of δ , and this will depend on the value of x. Therefore it is reasonable to assume that x is within 1 unit (an easy number to use) of 3, or x ϵ [2,4] ("x is an element of the closed interval [2,4]"). Letting x = 2 means that $\delta = \frac{\epsilon}{5}$ and letting x = 4 means that $\delta = \frac{\epsilon}{7}$. Obviously $\frac{\epsilon}{7}$ is smaller, so we take that fraction.

Therefore δ = the smaller of $\frac{e}{|x + 3|}$ or $\frac{\varepsilon}{7}$, depending on the choice of x. This is formally written as δ = min (1, $\frac{e}{|x + 3|}$)