\qquad
Show all appropriate work. Solutions are to be algebraic, not graphic. All answers are to be EXACT NO DECIMALS- if at all possible. Use back of page for more space, if needed.

For \# 1-2 Using only algebra, solve the following inequalities. Then graph their solution(s) .

1. $14 \mathrm{x}^{2}-29 \mathrm{x}>-12$
2. $|8+13 x| \leq 5$
3. Find the equation of a parabola $\left(y=a x^{2}+b x+c\right)$ that passes through the points $(1,46)$, $(2,84)$, and $(3,114)$.
4. Determine if the points $\mathrm{K}(-7,2), \mathrm{L}(5,3)$, and $\mathrm{M}(17,-8)$ are collinear. There are at least two algebraic methods (2 different concepts) available. XC for both. (no graphing allowed).
5. Given $f(x)=3 x^{2}-7 x+9$, find $\frac{f(x+h)-f(x)}{h}$ in simplest form.
6. Find the equation of the perpendicular bisector of the line segment whose endpoints are the points $(4,-9)$ and $(-16,-49)$.
7. Find the center and radius of the circle $3 x^{2}+3 y^{2}+6 x-9 y+3=0$
8. A basic exponential function is of the form $y=A b^{x} \quad$ Find the exponential equation that passes through the points $\left(-3, \frac{1}{432}\right)$ and $(7,139968)$
9. A triangle has vertices $A(a, b), B(c, d)$ and $C(e, f)$. Prove - using only algebra, and in terms of $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}-$ that the line segment connecting the midpoint of any two sides (AB, BC, or $A C$) of the triangle is parallel to the third side. XC: prove the line segment is also equal to onehalf the length of that third side.
10. Find the equation of the secant line passing through $y=\operatorname{Cos} x$, at $x=\frac{\pi}{4}$ and $x=\frac{11 \pi}{6}$. Be exact, no decimals.
