Trigonometric Substitutions

This handout covers how to work with the following forms:

$$
\begin{array}{lll}
\sqrt{a^{2}-x^{2}} & \sqrt{a^{2}+x^{2}} & \sqrt{x^{2}-a^{2}}
\end{array}
$$

Choose the expression	Make the substitution	$d \mathrm{dx}$ and $\mathrm{d} \theta$

finish the simplification
$x=\mathrm{a} \operatorname{Tan} \theta$
$\sqrt{\mathrm{a}^{2}+\mathrm{x}^{2}} \quad \mathrm{dx}=\mathrm{d}(\operatorname{a\operatorname {Tan}\theta)=}$
in $\sqrt{a^{2}+x^{2}}$
$\sqrt{\mathrm{a}^{2}+(\mathrm{a} \operatorname{Tan} \theta)^{2}}=$ (take the derivative)
finish the simplification
$x=\mathrm{a} \operatorname{Sec} \theta$
$\sqrt{x^{2}-a^{2}} \quad d x=d(a \operatorname{Sec} \theta)=$
in $\sqrt{x^{2}-a^{2}}$
$\sqrt{(a \operatorname{Sec} \theta)^{2}-a^{2}}=$
(take the derivative)

finish the simplification

Trigonometric Substitution Problems

1. $\int_{1}^{2} \frac{d x}{x^{2} \sqrt{9-x^{2}}}$
2. $\int \frac{d x}{\left(x^{2}+1\right)^{3 / 2}}$
3. $\int_{\sqrt{3}}^{2} \frac{\sqrt{x^{2}-3}}{x} d x$ or $\int_{\sqrt{3}}^{2} \frac{\sqrt{x^{2}-3} d x}{x}$ hint: remember, when you switch variables, what happens to the limits?
4. $\int \frac{x d x}{\sqrt{x^{2}+9}}$
5. $\int \frac{\sqrt{1-\mathrm{x}^{2}}}{\mathrm{x}^{4}} \mathrm{dx}$
6. $\int e^{2 x} \sqrt{e^{2 x}-1} d x$
7. $\int_{0}^{3 / 2} \frac{t^{2} d t}{\left(1-t^{2}\right)^{3 / 2}}$ hint: when you switch variables, what happens to the limits?
8. $\int_{0}^{3} \frac{t^{3}}{\sqrt{t^{2}+9}} d t$
9. $\int_{1}^{4} \frac{\sqrt{u-1}}{\sqrt{u}} d u$
