Law of Gravitation

In 1687 Isaac Newton published his Law of Gravitation which is stated mathematically in the following form:

$$
F_{g}=\frac{G m_{1} m_{2}}{r^{2}} \text { Law of Gravitation }
$$

$$
G=6.672 \times 10^{-11} \frac{\mathrm{Nm}^{2}}{\mathrm{~kg}^{2}} \text { (Gravitation Constant) }
$$

Although the Law of Gravity applies to particles (point masses), Newton also showed that it applies to spherically symmetric bodies because they behave as if their mass was concentrated at their center. If the bodies are not symmetrical, you can still compute the gravitational force between them by using the distance between the center of mass of both objects.

Weight

Consider an object at rest on earth' surface:

$W=F_{g}=\frac{G M_{E} m}{R_{E}^{2}}$ Weight of an object near earth's surface

Acceleration of Gravity

Consider an object of mass ' m ' in free-fall at a height ' h ' from earth's surface:

$$
\begin{aligned}
& \sum F_{y}=F_{g}=m a_{y} \\
& \frac{G M_{E} m}{\left(R_{E}+h\right)^{2}}=m g \\
& g=\frac{G M_{E}}{\left(R_{E}+h\right)^{2}} \text { Acceleration of Gravity }
\end{aligned}
$$

At surface of earth $h=0$:

$$
g=\frac{G M_{E}}{R_{E}^{2}}=\frac{\left(6.672 \times 10^{-11} \frac{\mathrm{Nm}^{2}}{\mathrm{~kg}^{2}}\right)\left(5.97 \times 10^{24} \mathrm{~kg}\right)}{\left(6.38 \times 10^{6} \mathrm{~m}\right)^{2}} \approx 9.8 \mathrm{~m} / \mathrm{s}^{2}
$$

At $\mathrm{h}=400 \mathrm{~km}$ (Shuttle's Orbit):

$$
g=\frac{G M_{E}}{R_{E}^{2}}=\frac{\left(6.672 \times 10^{-11} \frac{\mathrm{Nm}^{2}}{\mathrm{~kg}^{2}}\right)\left(5.97 \times 10^{24} \mathrm{~kg}\right)}{\left(6.38 \times 10^{6} \mathrm{~m}+400 \times 10^{3} \mathrm{~m}\right)^{2}}=8.7 \mathrm{~m} / \mathrm{s}^{2}
$$

Gravitational Potential Energy

Consider a planet of mass M and a particle of mass m. Let's find the work done by gravity in moving the particle from r_{1} to r_{2} along a straight path.

$$
\begin{aligned}
& w_{g}=\int_{r_{1}}^{r_{2}} \vec{F} \bullet d \vec{l}=\int_{r_{1}}^{r_{2}} \vec{F} \bullet d \vec{r}=\int_{r_{1}}^{r_{2}}-\frac{G M m}{r^{2}} d r \\
& w_{g}=-G M m \int_{r_{1}}^{r_{2}} \frac{1}{r_{1}^{2}} d r=-G M m\left(-\frac{1}{r}\right)_{r_{1}}^{r_{2}} \\
& w_{g}=\frac{G M m}{r_{2}}-\frac{G M m}{r_{1}}
\end{aligned}
$$

Since F_{g} is conservative:

$$
\begin{aligned}
& w_{g}=-\Delta U_{g} \\
& \Delta U_{g}=-w_{g} \\
& U_{2}-U_{1}=\frac{G M m}{r_{1}}-\frac{G M m}{r_{2}}
\end{aligned}
$$

Since the reference point for the PE function is completely arbitrary, it is convenient to define the PE to be zero when the force on the particle is also zero. Thus, we will take:

$$
U_{2}=0 \text { when } r \rightarrow \infty
$$

Therefore,

$$
\begin{aligned}
& U_{2}(\infty)-U_{1}=\frac{G M m}{r_{1}}-\lim _{r_{2} \rightarrow \infty} \frac{G M m}{r_{2}} \\
& U(r)=-\frac{G M m}{r} \text { Gravitational PE Function }
\end{aligned}
$$

$$
U(r)=-\frac{G M m}{r} \text { valid for } r \geq R
$$

Ex. a) Calculate the initial vertical launch speed af a projectile required to reach a height above the earth equal to the earth's radius.

$$
\begin{aligned}
& \frac{1}{2} m U_{i}^{2}=\frac{1}{2} \Theta \frac{M_{m}}{R_{E}} \\
& v_{i}=\sqrt{\frac{G M_{E}}{R_{E}}} \\
& V_{i}=\sqrt{\frac{\left(6.872 \times 10^{-11}\right)\left(5.97 \times 10^{24}\right)}{6.38 \times 10^{6} \mathrm{~m}}} \\
& v_{i}=7900 \mathrm{~m} / \mathrm{s} \approx 17.700 \mathrm{mp}
\end{aligned}
$$

b) Calculate the minimum speed so that the

$$
\begin{aligned}
& \text { projectile escapes from the earth's gravitational } \\
& \text { effect. } k_{i}+U_{i}=K+x y / f \\
& \frac{1}{2} m V_{e s c}^{2}-\frac{G M M}{R_{E}}=0 \\
& V_{e s c}=\sqrt{\frac{2 G M E}{R_{E}}}=1.12 \times 10^{4} \mathrm{~m} / \mathrm{s}=25,000 \mathrm{mph} \\
& V_{\text {ese }}=\sqrt{\frac{2 G M}{R}} \quad \begin{array}{l}
\text { Escape } \\
\text { Speed }
\end{array}
\end{aligned}
$$

