CENTRIPETAL ACCELERATION

OBJECTIVE

To calculate the net force on an object moving in uniform circular motion and compare with the expected value.

THEORY

A. Mass Rotating in Uniform Circular Motion

Consider the *Centripetal Force Apparatus* below. The mass M_{bob} is rotating in uniform circular motion about the vertical rod in a radius R.

Diagram 1

Applying Newton's $2^{\rm nd}$ Law in the radial direction gives a net force in the radial direction given by $F_{\rm net} = M_{\rm bob} a_r$ where $a_r = \frac{v^2}{R}$. The speed of the mass $M_{\rm bob}$ is given by $v = \frac{2\pi R}{T}$ and thus $a_r = \frac{4\pi^2 R}{T^2}$. Therefore, $F_{\rm net} = M_{\rm bob} \frac{4\pi^2 R}{T^2}$.

B. Mass in Equilibrium

Now let's consider the case when the mass M_{bob} is in equilibrium and the radius R is the same as it was when it was rotating in uniform circular motion. If this is the case, then the tension force which equals the weight of the hanging mass $W_{hanging}$, must be equal to the net force in the radial direction $F_{net} = M_{bob} \frac{4\pi^2 R}{T^2}$ when the mass M_{bob} was rotating in uniform circular motion. We will be comparing these two values taking $W_{hanging}$ to be the expected value.

Diagram 2

EQUIPMENT

- 1. centripetal force apparatus
- 2. set of masses and hanger
- 3. stopwatch
- 4. string
- 5. level
- 6. ruler

PROCEDURE

<u>Part 1(Uniform Circular Motion – see Diagram 1)</u>

- 1. Remove mass M_{bob} from apparatus and measure the mass with triple-beam balance. Place mass M_{bob} back on the apparatus but do not attach spring
- 2. With the spring not attached, level the platform with the level and align the mass pointer with the vertical pointer.
- 3. Measure the radius R.
- 4. Attach spring to mass M_{bob}.
- 5. Rotate M_{bob} at constant speed so that bob pointer is aligned with the vertical pointer.
- 6. Measure the time for 20 revs 3 times and calculate the average period.
- 7. Calculate the radial acceleration a_r using the average period.
- 8. Calculate the net force F_{net} in the radial direction.

Part 2 (Static Equilibrium – see diagram 2)

- 1. Leave the spring attached to mass M_{bob}.
- 2. Attach string with hanger to mass M_{bob}.
- 3. Add mass to hanger until the mass pointer and vertical pointer are aligned just as it was when M_{bob} was rotating in uniform circular motion.
- 4. Calculate weight W_{hanging} of hanging mass.
- 5. Compare $W_{hanging}$ with F_{net} . Take $W_{hanging}$ to be the accepted value and use $g = 9.80 \text{ m/s}^2$.
- 6. Repeat Part (1) and Part (2) above for a total of 4 different radii.

Construct a data table like the following in your lab report:

R (cm)	M _{bob} (kg)	t ₁ (20 revs)	$T_1(s)$	t ₂ (20 revs)	$T_2(s)$	$t_3(20 \text{ revs})$	$T_3(s)$	Tave

R (cm)	a_{r}	$F_r(N)$	M _{hanging} (kg)	$W_{hanging}(N)$	%error