Physics 2A Equation Sheet

$\Delta \vec{r}=\vec{r}_{f}-\vec{r}_{i}$	Displacement
$\vec{v}=\frac{\Delta \vec{r}}{\Delta t}$	Average velocity
$\vec{v}=\frac{d \vec{r}}{d t}$	Instantaneous velocity
$\vec{a}=\frac{\Delta \vec{v}}{\Delta t}$	Average acceleration
$\vec{a}=\frac{d \vec{v}}{d t}=\frac{d^{2} \vec{r}}{d t^{2}}$	Instataneous acceleration
$v=v_{o}+a t$	Velocity as function of time
$x=x_{o}+v_{o} t+(1 / 2) a t^{2}$	Position as function of time
$v^{2}=v_{o}^{2}+2 a\left(x-x_{o}\right)$	Velocity as function of position
$x=x_{o}+\left(\frac{v_{o}+v}{2}\right) t$	Position as function of velocity and time
$a_{r}=\frac{v^{2}}{r}$	Radial (centripetal) acceleration
$\sum \vec{F}=m \vec{a}$	Newton's $2^{\text {nd }}$ Law
$w=m g$	Weight of a body
$f_{k}=\mu_{k} N$	Kinetic friction force
$f_{s} \leq \mu_{s} N$	Static frictional force
$W=\vec{F} \bullet s=F s \cos \theta$	Work done by constant force
$F_{s}=-k x$	Spring force (Hooke's Law)
$W_{s}=(1 / 2) k x_{i}^{2}-(1 / 2) k x_{f}^{2}$	Work done by spring force
$W_{\text {applied }}=-W_{\text {s }}$	Work done by applied force
$K=(1 / 2) m v^{2}$	Kinetic energy
$W_{\text {net }}=K_{f}-K_{i}=\Delta K$	Work-Energy Theorem
$P_{\text {ave }}=\frac{\Delta W}{\Delta t}$	Average power
$P=\frac{d W}{d t}$	Instantaneous power
$P=\vec{F} \bullet \vec{v}=F v \cos \theta$	Instantaneous power
$U_{g}=m g y$	Gravitational PE Function (constant g)
$U_{s}=(1 / 2) k x^{2}$	Elastic PE Function
$E_{\text {mech }}=K+U$	Total Mechanical Energy

$W_{n c}=\Delta K+\Delta U$	Work by non-conservative forces
$\mathrm{K}_{\mathrm{i}}+\mathrm{U}_{\mathrm{i}}=\mathrm{K}_{\mathrm{f}}+\mathrm{U}_{\mathrm{f}}$	Conservation of Mechanical Energy
$\vec{P}=M \vec{V}$	Linear Momentum
$\sum \vec{F}_{e x t}=\frac{d \vec{P}}{d t}$	Newton's $2^{\text {nd }}$ Law
$\vec{I}=\sum \vec{F}_{e x t}\left(t_{2}-t_{1}\right)$	Impulse due to a constant net force
$I=\vec{p}_{2}-\vec{p}_{1}=\Delta \vec{p}$	Impulse-Momentum Theorem
$v_{2 f}-v_{1 f}=-\left(v_{2 i}-v_{1 i}\right)$	Relative velocities in an elastic collision
$s=r \theta$	Arc length
$\bar{\omega}=\frac{\Delta \theta}{\Delta t}$	Average Angular Speed
$\omega=\frac{d \theta}{d t}$	Instantaneous Angular Speed
$\bar{\alpha}=\frac{\Delta \omega}{\Delta t}$	Average angular acceleration
$\alpha=\frac{d \omega}{d t}=\frac{d^{2} \theta}{d t^{2}}$	Instantaneous angular acceleration
$\theta=\theta_{o}+\omega_{o} t+\frac{1}{2} \alpha t^{2}$	Angular position as function of time
$\omega=\omega_{o}+\alpha t$	Angular speed as function of time
$\omega^{2}=\omega_{o}^{2}+2 \alpha\left(\theta-\theta_{o}\right)$	Angular speed as function of angular position
$\theta=\theta_{o}+\left(\frac{\omega_{o}+\omega}{2}\right) t$	Angular position as function of angular speed and time
$\nu_{t}=r \omega$	Tangential speed
$a_{t}=r \alpha$	Tangential acceleration
$a_{r}=\frac{v^{2}}{r}=r \omega^{2}$	Radial (centripetal) acceleration
$I=\sum m_{i} r_{i}^{2}$	Moment of Inertia for System of Particles
$I_{p}=I_{c m}+M d^{2}$	Parallel-Axis Theorem
$K_{R}=\frac{1}{2} I \omega^{2}$	Rotational kinetic energy
$\vec{\tau}=\vec{r} \times \vec{F}$	Definition of Torque
$\sum \tau=I \alpha$	Newton's 2 ${ }^{\text {nd }}$ Law for Rotation
$W=\tau \Delta \theta$	Work Done by a constant Torque

