$\Delta \vec{r} = \vec{r}_f - \vec{r}_i$	Displacement
$\vec{v} = \frac{\Delta \vec{r}}{\Delta \vec{r}}$	Average velocity
Δt	Instantaneous velocity
$\vec{v} = \frac{dr}{dt}$	Instantaneous velocity
$\vec{v} = \frac{\Delta \vec{r}}{\Delta t}$ $\vec{v} = \frac{d\vec{r}}{dt}$ $\vec{a} = \frac{\Delta \vec{v}}{\Delta t}$	Average acceleration
$\vec{a} = \frac{d\vec{v}}{dt} = \frac{d^2\vec{r}}{dt^2}$	Instataneous acceleration
$v = v_o + at$	Velocity as function of time
$x = x_o + v_o t + (1/2)at^2$	Position as function of time
$v^2 = v_o^2 + 2a(x - x_o)$	Velocity as function of position
$x = x_o + \left(\frac{v_o + v}{2}\right)t$	Position as function of velocity and time
$a_r = \frac{v^2}{r}$ $\sum \vec{F} = m\vec{a}$	Radial (centripetal) acceleration
$\sum \vec{F} = m\vec{a}$	Newton's 2 nd Law
w = mg	Weight of a body
$f_k = \mu_k N$	Kinetic friction force
$f_s \leq \mu_s N$	Static frictional force
$W = \vec{F} \bullet s = Fs \cos \theta$	Work done by constant force
$F_s = -kx$	Spring force (Hooke's Law)
$W_s = (1/2)kx_i^2 - (1/2)kx_f^2$	Work done by spring force
$W_{\text{applied}} = -W_{\text{s}}$	Work done by applied force
$K = (1/2)mv^2$	Kinetic energy
$W_{net} = K_f - K_i = \Delta K$	Work-Energy Theorem
$P_{ave} = \frac{\Delta W}{\Delta t}$	Average power
$P = \frac{dW}{dt}$ $P = \vec{F} \bullet \vec{v} = Fv \cos \theta$	Instantaneous power
$P = \vec{F} \bullet \vec{v} = Fv \cos \theta$	Instantaneous power
U _g =mgy	Gravitational PE Function (constant g)
$U_s = (1/2)kx^2$	Elastic PE Function
$E_{mech} = K + U$	Total Mechanical Energy

W = A V + A I I	Work by non-conservative
$W_{nc} = \Delta K + \Delta U$	forces
$K_i + U_i = K_f + U_f$	Conservation of
	Mechanical Energy
$\vec{P} = M\vec{V}$	Linear Momentum
→	Newton's 2 nd Law
$\sum \vec{F}_{ext} = \frac{dP}{dt}$	
$\vec{I} = \sum \vec{F}_{ext} (t_2 - t_1)$	Impulse due to a constant net force
$I = \vec{p}_2 - \vec{p}_1 = \Delta \vec{p}$	Impulse-Momentum Theorem
$v_{2f} - v_{1f} = -(v_{2i} - v_{1i})$	Relative velocities in an elastic collision
$s = r\theta$	Arc length
$\overline{\omega} = \frac{\Delta\theta}{\Delta t}$ $\omega = \frac{d\theta}{dt}$	Average Angular Speed
	Instantaneous Angular
$\omega = \frac{d\theta}{dt}$	Instantaneous Angular Speed
$\overline{\alpha} \Delta \omega$	Average angular
$\overline{\alpha} = \frac{\Delta \omega}{\Delta t}$	acceleration
$\alpha - \frac{d\omega}{d\omega} - \frac{d^2\theta}{d\omega}$	Instantaneous angular acceleration
$\alpha = \frac{d\omega}{dt} = \frac{d^2\theta}{dt^2}$	
$\theta - \theta + \omega t + \frac{1}{\omega} \alpha t^2$	Angular position as
$\theta = \theta_o + \omega_o t + \frac{1}{2}\alpha t^2$	function of time
$\omega = \omega_{o} + \alpha t$	Angular speed as function
	of time
$\omega^2 = \omega_o^2 + 2\alpha(\theta - \theta_o)$	Angular speed as function
	of angular position
$\alpha = \alpha + (\omega_o + \omega)_t$	Angular position as
$\theta = \theta_o + \left(\frac{\omega_o + \omega}{2}\right)t$	function of angular speed
/	and time
$v_t = r\omega$	Tangential speed
$a_t = r\alpha$	Tangential acceleration
v^2 2	Radial (centripetal)
$a_r = \frac{v^2}{r} = r\omega^2$ $I = \sum m_i r_i^2$	acceleration
$I = \sum m r^2$	Moment of Inertia for
$ = \sum m_i r_i $	System of Particles
$I_p = I_{cm} + Md^2$	Parallel-Axis Theorem
$K_{R} = \frac{1}{2}I\omega^{2}$ $\vec{\tau} = \vec{r} \times \vec{F}$	Rotational kinetic energy
$\vec{\tau} = \vec{r} \times \vec{F}$	Definition of Torque
$\frac{\tau - \tau \times r}{\sum \tau = I\alpha}$	Newton's 2 nd Law for
	Rotation
$W = \tau \Delta \theta$	Work Done by a constant
	Torque
L	· · · · · · · · · · · · · · · · · · ·

$W = \frac{1}{2}I\omega_f^2 - \frac{1}{2}I\omega_i^2$	Work-Energy Theorem for Rotation
$W = \frac{1}{2}I\omega_f^2 - \frac{1}{2}I\omega_i^2$ $\overline{P} = \frac{\Delta W}{\Delta t} = \tau\overline{\omega}$ $P = \tau\omega$	Average power delivered by Torque
$P = \tau \omega$	Instantaneous power delivered by Torque
$K = \frac{1}{2}MV_{cm}^2 + \frac{1}{2}I_{cm}\omega^2$	Kinetic Energy = Translational KE + Rotational KE
$ \begin{aligned} v_{cm} &= R\omega \\ a_{cm} &= R\alpha \end{aligned} $	Condition for Rolling Without Slipping
$\vec{L} = \vec{r} \times \vec{p}$	Angular momentum
$\vec{L} = I\vec{\omega}$	Angular momentum for a rotating body about axis of symmetry
$\sum \vec{\tau}_{ext} = \frac{d\vec{L}}{dt}$	symmetry Newton's 2 nd Law for rotation
$F_g = \frac{Gm_1m_2}{r^2}$	Newton's Law of Gravitation
$w_E = F_g = \frac{GmM_E}{R_E}$	Weight of a body at surface of earth
$g = \frac{GM_E}{\left(R_E + h\right)^2}$	Acceleration of gravity
$U = -\frac{GMm}{r}$	Gravitational Potential Energy function
$v_{esc} = \sqrt{\frac{2GM}{R}}$	Escape Speed
$v = \sqrt{\frac{GM}{r}}$	Circular Orbit Speed
$T^2 = \left(\frac{4\pi^2}{GM}\right)r^3$	Orbital Period
$E = -\frac{GMm}{2r} = \frac{1}{2}U$	Orbital Total Mechanical Energy