ROTATIONAL MOTION

Consider a rigid body rotating CCW about a fixed axis of rotation. Let's look at the motion of a particle located at point P a distance ' r ' from the axis of rotation.

As the body rotates the particle moves in a circular path of radius ' r '. The distance the particle moves along this path is related to its angular position ' θ ' by the equation:

$$
s=r \theta
$$

Now consider the motion of the particle between two points A and B.

$$
\begin{aligned}
& \Delta \theta=\theta_{f}-\theta_{i} \\
& \text { Angular Displacement } \\
& \omega_{\text {ave }}=\frac{\theta_{f}-\theta_{i}}{t_{f}-t_{i}}=\frac{\Delta \theta}{\Delta t} \text { Average Angular Velocity } \\
& \omega=\lim _{\Delta t \rightarrow 0} \frac{\Delta \theta}{\Delta t}=\frac{d \theta}{d t} \text { Instantaneous Angular Velocity }
\end{aligned}
$$

If the angular velocity changes from ω_{i} to ω_{f} in a time $\Delta t=t_{f}-t_{i}$, then the particle experiences an angular acceleration:

$$
\alpha_{\text {ave }}=\frac{\omega_{f}-\omega_{i}}{t_{f}-t_{i}}=\frac{\Delta \omega}{\Delta t} \text { Average Angular Acceleration }
$$

$$
\alpha=\lim _{x \rightarrow 0} \frac{\Delta \omega}{\Delta t}=\frac{d \omega}{d t} \text { Instantaneous Angular Acceleration }
$$

For a body rotating about a fixed axis, every particle on the body has the same rotational quantities $\Delta \theta$, ω, and α. That is $\Delta \theta, \omega$, and α describe the rotational motion of the entire body.

Units
[θ] = radians
$[\omega]=\mathrm{rad} / \mathrm{s}=\mathrm{s}^{-1}$
$[\alpha]=\mathrm{rad} / \mathrm{s}^{2}=\mathrm{s}^{-2}$

- ω and α are vector quantities (θ is not a vector because it fails to satisfy the laws of vector addition)
- The direction of $\vec{\omega}$ is given by the Right-Hand Rule (RHR) and the direction of $\vec{\alpha}$ follows from its definition $\vec{\alpha}=\frac{d \vec{\omega}}{d t}$

RHR - Wrap your four right-hand fingers in the direction of rotation. Your extended thumb points in the direction of $\vec{\omega}$.

SLOWING DOWN

Mathematically, we have defined the rotational quantities θ, ω, and α similar to how we defined the linear quantities x , v , and a for linear motion. Therefore, the rotational equations of motion with constant angular acceleration, should also be similar.

Linear Motion	Rotational Motion
x	θ
v	ω
t	a
$x=x_{o}+v_{o} t+\frac{1}{2} a t^{2}$	$\theta=\theta_{o}+\omega_{o} t+\frac{1}{2} \alpha t^{2}$
$v=v_{o}+a t$	$\omega=\omega_{o}+\alpha t$
$v^{2}=v_{o}^{2}+2 a\left(x-x_{o}\right)$	$\omega^{2}=\omega_{o}^{2}+2 \alpha\left(\theta-\theta_{o}\right)$
$x=x_{o}+\left(\frac{v_{o}+v}{2}\right) t$	$\theta=\theta_{o}+\left(\frac{\omega_{o}+\omega}{2}\right) t$

