ROTATIONAL MOTION

Consider a rigid body rotating CCW about a fixed axis of rotation. Let's look at the motion of a particle located at point P a distance 'r' from the axis of rotation.

As the body rotates the particle moves in a circular path of radius 'r'. The distance the particle moves along this path is related to its angular position ' θ ' by the equation:

$s = r \theta$

Now consider the motion of the particle between two points A and B.

 $\Delta \theta = \theta_f - \theta_i$ Angular Displacement $\omega_{ave} = \frac{\theta_f - \theta_i}{t_f - t_i} = \frac{\Delta \theta}{\Delta t}$ Average Angular Velocity $\omega = \lim_{\Delta t \to 0} \frac{\Delta \theta}{\Delta t} = \frac{d\theta}{dt}$ Instantaneous Angular Velocity

If the angular velocity changes from ω_i to ω_f in a time $\Delta t = t_f - t_i$, then the particle experiences an angular acceleration:

$$\alpha_{ave} = \frac{\omega_f - \omega_i}{t_f - t_i} = \frac{\Delta \omega}{\Delta t}$$
 Average Angular Acceleration
$$\alpha = \lim_{x \to 0} \frac{\Delta \omega}{\Delta t} = \frac{d\omega}{dt}$$
 Instantaneous Angular Acceleration

For a body rotating about a fixed axis, every particle on the body has the same rotational quantities $\Delta \theta$, ω , and α . That is $\Delta \theta$, ω , and α describe the rotational motion of the entire body.

<u>Units</u>

 $\begin{aligned} [\theta] &= \text{radians} \\ [\omega] &= \text{rad/s} = \text{s}^{-1} \\ [\alpha] &= \text{rad/s}^2 = \text{s}^{-2} \end{aligned}$

- ω and α are vector quantities (θ is not a vector because it fails to satisfy the laws of vector addition)
- The direction of $\vec{\alpha}$ is given by the Right-Hand Rule (RHR) and the direction of $\vec{\alpha}$ follows from its definition $\left| \vec{\alpha} = \frac{d\vec{\omega}}{dt} \right|$

<u>RHR</u> – Wrap your four right-hand fingers in the direction of rotation. Your extended thumb points in the direction of $\vec{\omega}$.

Mathematically, we have defined the rotational quantities θ , ω , and α similar to how we defined the linear quantities x, v, and a for linear motion. Therefore, the rotational equations of motion with constant angular acceleration, should also be similar.

Linear Motion	Rotational Motion
X	θ
V	ω
t	α
$x = x_o + v_o t + \frac{1}{2}at^2$	$\theta = \theta_o + \omega_o t + \frac{1}{2} \alpha t^2$
$v = v_o + at$	$\omega = \omega_o + \alpha t$
$v^2 = v_o^2 + 2a(x - x_o)$	$\omega^2 = \omega_o^2 + 2\alpha(\theta - \theta_o)$
$x = x_o + \left(\frac{v_o + v}{2}\right)t$	$\theta = \theta_o + \left(\frac{\omega_o + \omega}{2}\right)t$