COURSE: Math 1B-67Z Calculus
Online
Conference Zone: TuTh 10:30-11:30
EMAIL: isonmillia@fhda.edu

QUARTER: Winter 2019
INSTRUCTOR: Millia Ison
OFFICE PHONE: 864-5659
OFFICE NUMBER: S76e

OFFICE HOUR : MTuWTh: 6:20-7:10 p. I will be in my office S76e on campus.
COURSE PREREQUISITES: Math 1A, or equivalent course with a grade " c " or better.
TEXT: Calculus: Early Transcendentals, by James Stewart, 8th edition.
ENROLL WEB ASSIGN : Webassign.net . Class code: deanza 47925838
Homework and quizzes are on Web Assign.
EQUIPMENT: A graphic calculator or computer with graph capability is required.
GRADING:
Homework ----75 points
13 quizzes ------ 75 points
3 midterms --- 300 points
Final exam ---- 150 points
Total ----------- 600 points

$|$| A: $93 \%-96 \%, 558-600 \mathrm{pts}$ |
| :--- |
| A-: $90 \%-92 \%, 540-557 \mathrm{pts}$ |
| B+: $87 \%-89 \%, 522-539 \mathrm{pts}$ |
| B: $83 \%-86 \%, 49-521 \mathrm{pts}$ |
| B-: $80 \%-82 \%, 480-497 \mathrm{pts}$ |

C+: 76\%-79 \% , 456-479 pts
C: $70 \%-75 \%, 420-455$ pts
D: 60 \% - 69 \%, 360-419 pts
F: $0 \%-59 \%, 0-359$ pts

HOMEWORK POINTS: You need to do your homework on a regular bases. However all homework is due on March 26. Total points on WebAssign is 763(subject to change). Out which, 673 points is required (subject to change). If you have 673, you earn 75 points (full credit) toward your grade. If you have total of 740 , then $740 / 673=1.1$, that is $110 \%, 110 \% \quad 75 \quad 82$, you have 82 points for homework, which is 7 points extra. Maximum you can earn is 85 points for homework, 10 points extra. If you complete all problems correctly, you may earn up to 10 extra credit points.

QUIZ POINTS: 6 points each quiz. Sundays $11: 59 \mathrm{pm}$, available 1 week before due. NO EXTENSION under any circumstances. If the deadline is missed, you get 0 for the quiz. There are 19 quizzes this quarter. Your 3 lowest quiz scores will be dropped. If you have 100% on all quizzes, then $166=96$ points. 75 points is quired, points over 75 is extra credit.

EXAM POINTS: 100 points each. MUST BRING YOUR PHOTO Identification Card

Exam 1: Jan. 23, Wednesday 7:30-8:30 pm Room: MLC-109
Exam 2: Feb. 13, Wednesday 7:30-8:30 pm Room: MLC-109
Exam 3: Mar. 6, Wednesday 7:30-8:30 pm Room: MLC-109
No make-up midterm exams. Absences are counted as 0's. If the percent of your final exam score is higher than some of your exams, it will replace the lowest exam score. It can only replace 1 out of 3 exams. For example: your lowest exam score is 73%, your achieve $120 / 150$ on the final exam, which is 80%. Then the 73 on the exam is replaced by 80 . If all your 3 exams are higher than your final exam percentage, then your exam scores will not change. People doing better on the final will help their overall score.
FINAL EXAM: 150 points. MUST BRING YOUR PHOTO Identification Card
Wednesday, March 27, 6:30-8:30p
Fail to take the final exam, you will receive " F " for your grade.
IMPORTANT DATES: Sunday, Jan. 20 --- Last day to drop without grade on your record. Friday, Mar. 1 --- Last day to drop with a "W".
Student misses numerouse quizzes and not come for exams without contact me will result in a "W" or "F" for the class. Student is responsible to withdraw from the class. The last day for you to withdraw is Mar. 1. After that day, you will receive a grade.

Text: Stewart $8^{\text {th }}$ edition
Math 1B-67Z Winter 2019 Calendar

Chapter	$\begin{gathered} \mathrm{SE} \\ \mathrm{C} \end{gathered}$	PROBLEMS		Monday	Tuesday	Wednesday	Thursday	Friday
Integrals	5.1 5.2 5.3	Areas and Distances The Definite Integral The Fundamental Theorem of Calculus Indefinite Integrals and the Net Change Thm The Substitution Rule	Jan Wk1	5.17	5.18	$\begin{array}{ll} \hline & 9 \\ 5.2, \\ \text { Quiz 5.1 } \\ \hline \end{array}$	$5.2 \begin{aligned} & 10 \\ & \end{aligned}$	11 Quiz 5.2
	5.4 5.5		Jan	5.314	$5.3,5.4^{15}$	$5.45 .5{ }^{16}$	$5.5{ }^{17}$	3.11
Hyp/Invhyp Log/Exp	3.1 1	Hyperbolic Funtions Redefine Log and Exp Functions	Wk2			Quiz 5.3		Quiz 5.5
	$\begin{gathered} \text { App } \\ \mathrm{G} \\ \hline \end{gathered}$		Jan	M L King Day ${ }^{21}$	$3.11{ }^{22}$	$\begin{gathered} \text { Exam } 1^{23} \\ 7: 30-8-30 p \\ \hline \end{gathered}$	$\text { AppG }{ }^{24}$	25
Applications of Integrals	6.1	Aresa Between Curves Volumes Volume by Cylindrical Shells Work Average Value of a Function	Wk3					Quiz App G
	$\begin{aligned} & 6.3 \\ & 6.4 \\ & 6.5 \end{aligned}$		Jan Feb Wk4	6.128	$6.1{ }^{29}$	$$	$6.2 \begin{aligned} & \\ & \\ & \end{aligned}$	$\begin{array}{cc} \hline & 1 \\ 6.2 & \\ \text { Quiz } 6.2 & \\ \hline \end{array}$
Techniques of Integration	7.1 7.2 7.3	Integration by Parts Trigonometric Integrals Trigonometric Substitution Integration of Rat'l Funct'ns by Partial Fractions Strategy for Integration Integration Using Tables and Computer Approximate Integration Improper Integrals	Feb Wk5	6.3 4	6.45	$\begin{array}{cc} 6.4 \\ \text { Quiz } 6.3 \\ \hline \end{array}$	$6.5 \begin{aligned} & \\ & \end{aligned}$	$\begin{array}{cr} & 8 \\ 7.1 & \\ \text { Quiz } 6.4 & \\ \hline \end{array}$
	7.4 7.5 7.6		Feb Wk6	7.1, 7.2, ${ }^{11}$	$7.2{ }^{12}$	$\begin{gathered} \text { Exam } 2^{13} \\ 7: 30-8-30 p \end{gathered}$	$7.3{ }^{14}$	15 Lincoln's Birthday Holiday
	$\begin{aligned} & 7.7 \\ & 7.8 \\ & \hline \end{aligned}$		Feb	Washington's $\begin{array}{r}18 \\ \text { B-day }\end{array}$	$7.3{ }^{19}$	$7.4, \quad 20$	7.4, 7.5	7.5
Further Applications	8.1	Arc Length Arc Length of Parametric Equations Applications to Physics and Engineering Probability	Wk7	Holiday		Quiz 7.3		Quiz 7.4
	$\begin{gathered} 10.2 \\ 8.3 \\ 8.5 \\ \hline \end{gathered}$		Feb Mar Wk8	7.6	$7.7{ }^{26}$	$\begin{gathered} \quad 27 \\ 7.8 \\ \text { Quiz } 7.7 \\ \hline \end{gathered}$	$7.8{ }^{28}$	$\begin{gathered} 1 \\ \text { Quiz } 7.8 \\ \text { last day to drop w/W } \\ \hline \end{gathered}$
Differential Equations	$\begin{aligned} & \hline 9.1 \\ & 9.2 \\ & 9.3 \end{aligned}$	Modeling with Differential Equations Direction Fields and Euler's Method 9.3 Separable Equations 9.4 Models for Population Growth	Mar Wk9	8.14	$10.2{ }^{5}$	$\begin{gathered} \text { Exam } 3 \\ \text { 7:30-8-30p } \\ \hline \end{gathered}$	$8.3{ }^{7}$	8.3 8 Quiz 8.3 8 Quiz 8.3
	9.4		Mar Wk10	8.5	$8.5{ }^{12}$	$\begin{gathered} 13 \\ 9.1 \\ \text { Quiz } 8.5 \\ \hline \end{gathered}$	9.2^{14}	15
All homework assignments and due dates are listed on WebAssign. These are the least amount of exercises you need to do. If you don't master the material well afterdoing WebAssign, work with more of the similar problems in the text.								$\begin{gathered} 9.3 \\ \text { Quiz } 9.2 \\ \hline \end{gathered}$
			Mar Wk11	9.318	$9.3 \begin{aligned} & 19\end{aligned}$	$\begin{gathered} 20 \\ 9.4, \\ \text { Quiz } 9.3 \\ \hline \end{gathered}$	$9.4{ }^{21}$	Quiz $9.4{ }^{22}$
			Mar Wk12	25	26	27 Final 6:30-8:30p	28	29

Student Learning Outcome(s):

*Analyze the definite integral from a graphical, numerical, analytical, and verbal approach, using correct notation and mathematical precision.
*Formulate and use the Fundamental Theorem of Calculus.
*Apply the definite integral in solving problems in analytical geometry and the sciences.

